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Adenosine receptors are a family of G-coupled receptors which mediate the anti-
inflammatory and immune-suppressive effects of adenosine in a damaged tissue. A large 
number of evidence indicate that the accumulation of adenosine under hypoxic conditions 
favors tumor progression, helping cancer cells to evade immune responses. Tumor cells and/
or lymphoid and myeloid cells can express the adenosine-generating enzyme CD73 and/or 
A2A receptor, which in turn strongly suppresses an effective T-cell-mediated response, while 
promotes the activity of suppressive cells such as Treg and myeloid-derived suppressor 
cells. CD73 inhibitors and A2A antagonists, either as single agents, or in combination with 
immune-checkpoints inhibitors such as anti PD-1 monoclonal antibodies, are currently 
in Phase I clinical trial in cancer patients. Recent studies show that A2B receptor plays an 
important role in mediating the pro-tumor effects of adenosine, since its selective blockade 
can inhibit tumor growth in some murine tumor models. Targeting A2B receptor reduces 
immunosuppression induced by myeloid cells and inhibits the stromal cells activity within 
the tumor microenvironment, limiting tumor angiogenesis and metastatic processes. Here, 
the authors review the current data on involvement of A2B receptor in regulating tumor 
progression and discuss the development of A2B receptor inhibitors as potential therapeutic 
agents in cancer treatment.
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INTRODUCTION

Tumor microenvironment is populated not only by 
malignant cells but also by other stromal cells and 
immune cells that cooperate to the development of 
cancer.[1,2]

In the eternal battle against cancer, several strategies 
have been developed. One of the first approach to treat 
cancer has been the antineoplastic chemotherapy which 
is made up of chemical substances that provide to halt 
directly the highly-replicating tumor cells by damaging 
their RNA or DNA.[3] Radiotherapy is another important 
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treatment currently used for several tumors, through 
which cancer cells are either directly killed upon DNA 
damage by depositing high physical energy of radiation, 
or indirectly due to the release of free radicals.[4] 
Nowadays the most novel anti-cancer strategies are 
the targeted-therapy and immunotherapy. The cancer 
targeted-therapy uses small molecules that can block 
fundamental pathways or mutant proteins essential for 
tumor growth.[5] Conversely, cancer immunotherapy is 
a therapeutic strategy that improves the host immune 
response against cancer cells, instead of acting directly 
on tumor cells.[6]

Several chromosomal alterations, genetic mutations 
and genomic instability that occur in cancer cells 
provide a different set of antigens that the immune 
system can use to distinguish transformed cells from 
their own cells.[7] However, tumor cells escape from host 
immune surveillance through different mechanisms, 
that include loss of immunogenicity and ineffective 
T-cell mediated responses. Moreover, several 
inflammatory mediators including chemokines [CC-
chemokine ligand 2 (CCL2), CCL5, CXC-chemokine 
ligand 1 (CXCL1), CXCL2, CXCL3, CXCL5, CXCL6, 
CXCL7, CXCL8, CXCL10 and CXCL12], cytokines 
[tumor necrosis factor (TNF), interleukin 1 (IL-1), IL-
4, IL-5, IL-6, IL-10 and IL-13] and growth factors 
[granulocyte macrophage-colony stimulating factor 
(GM-CSF), vascular endothelial growth factor (VEGF), 
transforming growth factor-ß (TGF-ß)] are released by 
tumor cells and/or stroma and immune cells surrounding 
tumor tissue, generating a chronic inflammatory 
microenvironment. Chronic inflammation in cancer can 
facilitate tumor proliferation and invasion and drive the 
recruitment and activation of immunosuppressive cells, 
including T regulatory (Treg) cells, myeloid-derived 
suppressor cells (MDSCs) and tumor-associated 
macrophages (TAM). In this context, many inhibitory 
receptors, known as “immune checkpoint molecules” 
such as cytotoxic T-lymphocyte-associated antigen 
4 (CTLA4) and programmed cell death-1 (PD-1), are 
upregulated on activated lymphocytes during an active 
immune response providing a negative feedback 
mechanism.[7] CTLA4 binds to members of the B7 
family on antigen-presenting cells (APCs) inhibiting 
T-cell activation, while PD-1 interacts with ligands 
PD-L1, expressed on different cell types including 
tumor cells, or PD-L2 on macrophages and dendritic 
cells, inhibiting T-cell functions.[7,8] The development 
of agonist antibodies (for costimulatory pathways) or 
antagonist antibodies (for inhibitory pathways) which 
target lymphocyte receptors or their ligands is one 
of the most promising approach with the potential to 
modulate the tumor microenvironment and improve 
the efficacy of immune response/s against cancer 

cells.[8] The first class of immunotherapeutics approved 
by US Food and Drug Administration (FDA) for 
patients with metastatic melanoma includes antibodies 
against CTLA4 (Ipilimumab and Tremelimumab).[9] 
Later on other immune checkpoint molecules have 
been discovered, such as antibodies against PD-1 
(Nivolumab, Pembrolizumab and Atezolizumab), 
PD-L1, lymphocyte-activation gene 3 (LAG3, also 
known as CD223), B7-H3 (also known as CD276), 
B7-H4 (also known as B7-S1, B7x and VCTN1) and 
T-cell immunoglobulin domain and mucin domain 3 
(TIM3).[8] The therapeutic outcomes in cancer patients 
is improved by combining immunotherapeutics with 
chemotherapy.[8] The concomitant blockade of different 
immune checkpoints may increase the success of 
immunotherapy in cancer patients.[8] Hence, in the 
last few years many efforts have been made aiming 
to investigate novel therapeutic strategies to inhibit 
cancer-induced immune-suppression. It has become 
clear that in the tumor microenvironment there are 
several pathways that may play an important role in 
the tumor immune evasion process. Among them, 
extracellular adenosine, an ATP-derived molecule 
generated by the extracellular CD39/CD73 enzymes, 
has been identified as an immune checkpoint that 
critically impairs the anti-tumor immune response 
mainly via A2A adenosine receptor subtype.[10-12] 
Accordingly, selective inhibitors of adenosine signaling 
pathways have been tested in pre-clinical studies[13,14] 

and some of them, including the antibody anti-CD73 
and the A2A receptor antagonists are currently in Phase 
I clinical trials in cancer patients, either as single 
agents, or in combination with immune checkpoints 
inhibitors such as anti PD-1 monoclonal antibodies 
[NCT02503774 and NCT02655822].

While the role in tumor immunity of CD73-A2A receptor 
axis has been extensively examined, less is known 
about the role of A2B receptor subtype in tumor 
development and progression. Compelling evidence 
suggest that this receptor contributes to the pro-tumor 
effects of adenosine within tumor microenvironment. In 
this article, we review the current data on the effects 
of adenosine in tumor progression, focusing on the 
emerging role of A2B receptor in regulating tumor growth 
and discuss the therapeutic potential of targeting A2B 
receptors in cancer treatment.

CRITICAL ROLES OF ADENOSINE IN 
TUMOR PROGRESSION

Adenosine is a key endogenous molecule produced 
at the extracellular level by two ectoenzymes, ecto-5’-
nucleotidase (CD73) and ectonucleoside triphosphate 
diphosphohydrolase-1 (CD39) physiologically 
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expressed on both hematopoietic and non-
hematopoietic cell types.[15,16] Once released in the 
extracellular space, adenosine elicits its physiological 
responses by coupling and activating four membrane 
adenosine receptors (A1, A2A, A2B, A3) which contain 
seven transmembrane domains coupled to G 
proteins.[17] Once bounded with its receptors, adenosine 
can inhibit (via A1 and A3) or stimulate (via A2A and A2B) 
the adenylyl cyclase resulting in a decrease or increase 
in cyclic AMP (cAMP) accumulation, respectively.[18] 
cAMP activates the protein kinase A (PKA) and in 
turn the nuclear substrate cAMP responsive element-
binding protein (CREB) that regulates the expression 
of several genes by binding to cAMP responsive 
elements and other cAMP effectors such as Epac, 
altering pro-inflammatory genes expression.[19-22] A2B 
receptor can also activate the phospholipase C (PLC) 
by coupling Gq protein.[23,24] All adenosine receptors 
are involved in the modulation of mitogen-activated 
protein kinase (MAPK) activity.[25]

The tumor milieu is characterized by high levels 
of adenosine triphosphate (ATP) due to the high 
proliferating rate of cancer cells. The ATP is rapidly 
converted at the extracellular level in ADP and AMP 
through two reversible steps via CD39, while the 
last irreversible step in adenosine is mediated by 
CD73.[16] Under homeostatic conditions adenosine 
level is low but during pathophysiological events 
(including stress, infection, inflammation and cancer) 
extracellular adenosine levels can be increased from 
10-200 nmol/L up to 10-100 μmol/L.[26] In inflammatory-
associated conditions, adenosine typically attenuates 
the inflammatory response.[26,27] Importantly, studies 
by Ohta and Sitkovsky[28] showed for the first time 
that A2A receptor-deficient mice are unable to control 
inflammation, resulting in exaggerated immune 
responses which can trigger extensive tissue disruption 
with subsequent cell death. These effects of adenosine 
are dependent on the activation of the adenosine A2A 
receptors on immune cells, which induce a wide range 
of singular immunosuppressive responses which 
regulate the uncontrolled inflammation to harmful 
insults.[27,29,30] However, in the context of tumor while 
extracellular ATP increases the T-cell mediated effector 
function, high levels of adenosine mediates opposite 
effects favoring immune suppression that is associated 
with tumor growth and metastasis.[31] Hypoxia, which is 
a common feature of the tumor microenvironment that 
promotes immunosuppression, is one of the main factors 
responsible of the increased production of adenosine 
within many solid tumors.[11] Indeed, the expression 
and the enzymatic activities of CD39 and CD73, 
responsible of the adenosine generation, increased 
under hypoxic conditions, while the expression of the 

adenosine kinase, which inhibits the metabolism of 
adenosine, is down-regulated.[11] At the same time, the 
expression of adenosine receptors A2A and A2B is also 
up-regulated.[32] Consequently, adenosine along with 
other HIF-induced immunosuppressive factors and 
cells, contributes to modulate the functions of tumor 
cells, tumor-infiltrating immune cells and/or other 
stroma cells.

Within the hematopoietic compartment, CD39 is 
expressed on B cells and monocytes, subsets of CD8+ T 
cells, CD4+ T cells and NK cells.[15,33] CD73 is expressed 
on B cells and subsets of CD8+ T cells, CD4+ T cells and 
NK cells and small subsets of monocytes.[15,33] CD39 
and CD73 are co-expressed on B cells, Treg cells, 
Th17 cells, NK cells, neutrophils, tissue macrophages 
and myeloid-derived suppressor cells (MDSCs).[15,33] 
CD39 and CD73 are also expressed on endothelial 
cells and on the surface of several types of cancer 
cells.[14,15] Thus, CD73-expressing cells, including 
immune cells and/or stroma cells, produce adenosine 
that accumulate in the tumor microenvironment and 
profoundly impairs anti-tumor immune responses. 
Accordingly, a large number of evidence have 
proved that targeting adenosine-generating enzymes 
significantly reduces tumor growth by improving anti-
tumor immune responses.

A2A receptor is the most thoroughly characterized 
receptor involved in the adenosine-induced anti-
inflammatory/immune-suppressive effects within 
the tumor microenvironment. A2A receptor is highly 
expressed on lymphocytes, macrophages, dendritic 
cells, NK cells, and neutrophils. Activation of A2A 
receptor significantly reduces T-cell receptor (TCR)-
triggered effector functions, including proliferation 
and production of cytokines and chemokines, 
preventing T cells activation and function via cAMP/
protein kinase cAMP-dependent (PKA) pathways.[34-36] 
These effects occurs upon A2A adenosine receptor 
stimulation in naïve CD4+ T cells as well as in CD8+ 
T cells. Furthermore, A2A receptor stimulation reduces 
the expression of CD25 and CD40 ligand (CD40L) 
and increases the expression of PD-1 and CTLA-
4 on T cells,[37] inducing T cell anergy that promotes 
peripheral tolerance.[35] Stimulation of A2A receptor on 
myeloid cells can also affect the release of IL-12 and 
induce the production of IL-10,[38] affecting significantly 
the T- and NK-cell responses in the solid tumor 
microenvironment.[39] Additional evidence also show 
that A2A adenosine receptor stimulation promotes the 
development of immune suppressive myeloid cells[40] 
or Treg cells.[41] The first in vivo genetic evidence of 
the role of A2A receptor in tumor progression has 
been reported by Ohta et al.[10] who showed that 60% 
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of A2A receptor deficient mice completely rejected 
established immunogenic tumors in a CD8+ T-cell-
dependent manner. However, 40% of tumor-bearing 
A2A receptor deficient mice did not reject the tumor, 
possibly because of the expression of A2B receptor on 
A2A receptor deficient CD8+ T cells.[10]

At the same time a large number of evidence show 
that inhibition of CD73 activity or CD73 knockdown 
on tumor cells inhibit tumor growth and metastasis by 
enhancing the anti-tumor T cell response.[42-46] CD73-
deficient mice are resistant to tumor and show an 
increased influx of CD8+ T cells[44] and low number of 
Tregs within the tumor.[47]

The expression of CD73 on various tumor 
cells from cancer patients, including breast,[46] 
glioblastoma,[48] prostate,[49] ovarian,[50] leukemia[51] 
has been associated with poor prognosis. Notably, 
some chemotherapeutics are able to increase the 
expression of CD73 on cancer cells, which may in 
turn represent a putative mechanism of resistance 
to chemotherapeutics.[46,49,51] On the other hand, 
targeting CD73 can improve the therapeutic potential 
of some conventional cancer treatments, including 
chemotherapy, radiotherapy and immunotherapy. 
For example, inhibition of CD73 in combination 
with doxorubicin prolonged the survival of mice with 
metastatic breast cancer.[46] Adenosine can also impair 
the anti-tumor response induced by high dose of 
radiation therapy.[52] Administration of CD73 inhibitor 
into mice with tumors exposed to radiation therapy 
can significantly reduce tumor growth.[52] Notably, 
inhibition of CD73 may also improve the synergy of 
radiation therapy in combination with anti-CTLA4 
monoclonal antibody.[52]

Recent studies indicate that inhibition of adenosine/
A2 adenosine receptors axis synergizes with other 
immune checkpoints inhibitors reducing potently 
tumor growth in murine models of cancer. In particular, 
treatment of mice with monoclonal antibody anti-
CD73 enhances the anti-tumor effects of antibodies 
anti-PD1 and anti-CTLA4.[53] In support, other studies 
have demonstrated that selective blockade of A2A 
adenosine receptor in combination with anti PD-1 
antibody and anti-CTLA4 antibody potently reduced 
tumor growth.[54-56] The therapeutic synergy of these 
combinations depends on the CD73 expression on 
tumor cells, proving that CD73-generating adenosine 
by tumor cells within the tumor microenvironment may 
affect the activity of immunotherapy. Furthermore, 
blockade of PD-1 enhances the expression of A2A 
receptors on tumor-infiltrating CD8+ T cells, suggesting 
that adenosine via A2A receptor limits the immune 

response against cancer induced by inhibitors of 
immune checkpoints.[54] More recently, it has been 
demonstrated that blockade of A2B adenosine receptor 
subtype with a selective antagonist improves survival 
and the anti-metastatic effects of anti-PD1 and anti-
CTLA4 monoclonal antibodies in both melanoma and 
mammary cancer models of metastasis with cells 
expressing CD73.[57] The anti-metastatic effects of 
these combinations relies on the capacity of immune 
checkpoints inhibitors to boost immune responses and 
on direct effects of A2B adenosine receptor inhibitor 
on cancer cell metastasis.[57] Here the authors show 
that blockade of A2B receptor in A2B receptor deficient 
mice is able to reduce the metastasis of human triple 
negative breast cancer (TNBC) xenografts, confirming 
the critical role of A2B receptor on cancer cells rather 
than host cells.[57] Altogether these preclinical studies 
strongly support the therapeutic potential of targeting 
adenosine in cancer.

Experimental evidence suggests that also CD39 
can represent a potential therapeutic target for 
cancer treatment. CD39 is highly expressed by Treg 
cells and together with CD73 generate adenosine 
in the tumor microenvironment.[58] Elevated levels 
of CD39-expressing Treg cells have been found in 
some mouse tumor tissues, including melanoma and 
colorectal cancer.[58] Inhibition of CD39 reduces the 
tumor growth, enhances the recruitment of T cells in 
the tumor lesions and improves the effector functions 
of CD8+ T cells and NK cells, by impairing the activity 
of CD39-expressing Treg cells.[58] Although additional 
studies are needed to better clarify the therapeutic 
potential of targeting CD39 in cancer, the use of 
CD39 inhibitors might be useful to limit the immune 
suppression induced by Treg cells.

Selective agonists of A3 adenosine receptor subtype 
have proved to directly inhibit proliferation of A3-
expressing tumor cells by arresting cell cycle 
progression and exert immunostimulatory effects 
in some murine tumor models in a NK- and T-cell-
dependent manner, enhancing the production of Th1-
like cytokines in the tumor microenvironment.[59-63] 
A3 adenosine receptor agonists have been tested 
indeed in some clinical trials for rheumatoid arthritis 
(NCT00280917, NCT00556894, NCT01034306, 
NCT02647762),[64] hepatocellular carcinoma 
(NCTNCT00790218, NCT02128958) and hepatitis 
(NCT00790673),[65] dry eye syndrome (NCT01235234, 
NCT00349466)[66] and psoriasis (NCT01265667).[67]

Nonetheless, emerging evidence suggest that 
A2B receptor can mediate the pro-tumor effects of 
adenosine. It is known that A2B receptor is important 
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in some patho-physiological conditions, including 
vascular injury,[68] chronic lung disease,[69] vascular 
leak,[70] and ischemic disease.[71] First studies 
performed by Ryzhov et al.[72] in 2008 show that tumor 
growth in A2B receptor deficient mice was reduced 
compared to that observed in wild type mice, providing 
the first genetic evidence for a pivotal role of A2B 
receptor in tumor progression.

Up to now a number of selective A2B receptor 
antagonists (such as MRS1754, ATL801, GS-6201, 
PSB603 and PSB1115) and selective A2B agonists 
(Bay60-6583) have been synthesized, helping the 
study and the characterization of the role of this 
adenosine receptor in many patho-physiological 
conditions, including cancer, as discussed below.

EXPRESSION OF A2B RECEPTOR

A2B adenosine receptor is widely expressed in the 
entire organism, although its role is not completely 
understood. The A2B receptor expression has 
been detected in type II alveolar epithelial cells,[73] 
endothelial cells,[74] chromaffin cells,[75] astrocytes,[76] 
neurons,[77] and taste cells.[78] Moreover, A2B receptor 
is expressed also on many immune cell populations 
including mast cells,[79] neutrophils,[70] dendritic cells,[80] 
macrophages,[74] and lymphocytes.[81]

Despite A2B receptor binds adenosine with lower 
affinity (EC50 = 24 μmol/L) than A2A receptor,[72,82] its 
relevance in regulating tumor growth is becoming clear 
both because its expression is highly influenced by 
the tumor milieu and because A2B receptor can play 
different physiological roles compared to A2A receptor.

The tumor microenvironment is characterized by high 
proliferating rate of cancer cells which contribute to 
hypoxia condition. Hypoxia is a very strong stimulus for 
up-regulating A2B receptor expression through hypoxia 
inducible factor (HIF-1α) and hypoxia-dependent 
signaling pathways in endothelial cells, dendritic cells 
(DCs), muscles, fibroblasts and T cells.[32,83-87] Indeed, 
a functional hypoxia-responsive region within the A2B 
receptor promoter has been identified, confirming 
the selective transcriptional induction A2B receptor by 
hypoxia.[87] Transcription of A2B receptor can be induced 
by bacterial lipopolysaccharide (LPS) or interferon 
(IFN)-γ in macrophages,[88,89] by TNF-α in vascular 
smooth muscle cells,[90] and by IL-1β in endothelial 
cells.[91] Furthermore, a post-transcriptional regulation 
of A2B receptor by inflammatory mediators has been 
demonstrated in endothelial and pulmonary epithelial 
cells[92] and in colonic epithelial cells.[93] Therefore, 
although A2B is a low-affinity adenosine receptor, 

under inflammatory-hypoxic conditions, its expression 
is up-regulated while the concentration of adenosine 
reaches highest levels. In this context, the A2B receptor 
may play an important role in mediating adenosine-
induced pathological effects.

A2B RECEPTOR AND TUMOR IMMUNITY

Although the role of A2B receptor in controlling T-cell-
mediated response is not completely clear, compelling 
evidence indicate that this receptor may influence the 
features of some immune cell populations.

It has been demonstrated that A2B receptor is involved 
in the differentiation of T cells under Treg skewing-
conditions, since its inhibition is able to suppress the 
expression of FoxP3 and IL-10 production in a way 
completely independent from T cell activation.[94]

To be activated and provide anti-tumor responses 
CD4+ T-cells need the expression of the major 
histocompatibility complex (MHC) class II. In several 
types of tumors, the loss of MHC class II is related 
to impaired levels of CD4+ T-cells.[95] Moreover, the 
levels of either MHC class II or class II transactivator 
(CIITA) are altered in highly metastatic cancer cells.[96] 
A2B receptor stimulation by repressing CIITA can 
impair MHC class II transcription in IFN-γ-stimulated 
cells.[97,98] Moreover, bone marrow-derived dendritic 
cells (BMDCs) express A2B receptor and adenosine 
inhibits BMDCs IL-12p70 production via A2B receptor. 
Depending on the levels of this cytokine, CD4+ T-cells 
can differentiate into Th1 or Th2 cells.[99] The impaired 
production of pro-inflammatory cytokines (TNF-α and 
IL-12) and the increased IL-10 production induced by 
A2B receptor activation leads to a lower expression 
of CD86 and MHC class II lowering CD4+ T cell 
stimulation.[100]

A2B receptor can also affect macrophages proliferation 
induced by macrophage colony-stimulating factor 
(M-CSF)[101] and the differentiation of human 
monocytes, mouse peritoneal macrophages and 
hematopoietic progenitor cells (HPCs) into myeloid 
DCs with tolerogenic and angiogenic features.[80] A2B 
receptor activation promotes the expansion in vitro of 
MDSCs, that contribute to induce immunosuppression 
by producing adenosine.[102] MDSCs potently 
suppress anti-tumor T-cell response and/or promote 
angiogenesis.[103] Altogether, these studies strongly 
support a role of A2B receptor in inducing the 
differentiation of hematopoietic progenitor cells into 
mature cells with tolerogenic and suppressive features. 
Subsequent studies performed in vivo show that 
A2B deficient mice have reduced amounts of tumor-
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infiltrating myeloid cells CD11bhigh/Gr-1high, suggesting 
that A2B receptor suppresses immune surveillance.[72] 
Later, Cekic et al.[104] showed that the selective blockade 
of A2B receptor inhibits bladder and breast tumor 
growth in mice, by inducing a T-cell mediated response 
in a CXCR3-dependent manner. In a mouse model of 
melanoma, selective blockade of A2B receptor inhibits 
tumor growth.[105] This effect was associated with lower 
levels of IL-10 and MCP-1 in the tumor tissue and 
reduced accumulation of tumor-infiltrating MDSCs.[105] 
Notably, the levels of MDSCs in secondary lymphoid 
organs remained unchanged in mice treated with the 
selective A2B receptor antagonist, consistent with a 
selective activity of the antagonist on the recruitment 
of MDSCs to tumor lesions rather than with a putative 
systemic effects.[105] Blockade of A2B receptor within 
the tumor microenvironment modulates the intra-
tumoral levels of various inflammatory mediators and 
growth factors that could in turn influence the features 
of tumor-infiltrating immune cells, promoting the 
recruitment/accumulation of MDSC.[106] Accordingly, the 
percentage of tumor-infiltrating CD8+ T cells upon A2B 
receptor blockade enhanced in the tumor lesions.[105] 
Furthermore, treatment of mice with the A2B receptor 
antagonist PSB1115 in combination with dacarbazine, 
a chemotherapeutic agent commonly employed 
in melanoma patients, reduces tumor growth and 
significantly increases the number of CD8+ T cells in 
the melanoma lesions demonstrating the high potential 
of combining A2B receptor blockade and chemotherapy 
for cancer treatment.[105,106]

In conclusion, the experimental evidence in some tumor 
mouse models suggest that the selective blockade 
of A2B receptor may ameliorate T cell-mediated 
immune surveillance by impairing the accumulation 
of suppressive cells and the levels of inflammatory 
factors in the tumor microenvironment.[72,104-106] 
However, despite the relevance of these observations, 
more studies are needed to provide a detailed 
understanding of the role of A2B receptor in modulating 
the immune responses in tumor environments.

A2B RECEPTOR AND TUMOR STROMA

A number of studies indicate that A2B receptor can 
directly affect the proliferation/migration of tumor 
cells and the function of other stroma cells that 
populate the tumor niche, including endothelial cells 
and fibroblasts.

A critical role for A2B adenosine receptor in mediating 
proliferation and/or apoptosis in different cancer cell 
lines has been delineated. A2B adenosine receptor 
is highly expressed in prostate cancer cell lines 

and selective antagonist of A2B adenosine receptors 
or silencing A2B receptors blocked the proliferative 
effects induced by a non-selective adenosine analog 
NECA.[107,108] Other studies indicate that A2B adenosine 
receptor is highly expressed also in oral squamous 
carcinoma cell lines, as well as in human oral 
carcinoma tissues, where its expression is correlated 
with those of HIF-1.[109] Studies by Gessi et al.[110] 
demonstrate that in colon cancer cells, although at the 
mRNA levels A2B receptor is more expressed than A1, 
A2A and A3, the density of A3 receptors is the highest 
among the adenosine receptor subtypes. Later, 
other studies have demonstrated that the adenosine 
A2B receptor is up-regulated in colorectal carcinoma 
tissues and colon cancer cell lines compared with 
normal colorectal mucosa under hypoxic conditions.[111] 
Antagonists of A2B receptors inhibit cancer cell 
proliferation, suggesting that this receptor may be a 
potential therapeutic target for colorectal cancer.[111]

In contrast, in gastric cancer cells A2B adenosine 
receptor has been identified as target of miR-
128b, a proto-oncogene miRNA down-regulated in 
gastric cancer tissues.[112] In this work, the authors 
demonstrate that the down-regulation of miR-128b 
in gastric cancer cell is associated with an over-
expression of A2B adenosine receptor and decreased 
cell apoptosis rate.[112] In osteosarcoma cells it 
has been demonstrated that p73 upregulates A2B 
adenosine receptor and A2B receptor agonists can 
enhance p73-dependent cell death in response 
to chemotherapy.[113] Moreover, stimulation of A2B 
receptor with a non-selective adenosine analog 
NECA induces apoptosis in ovarian cancer cells.[114] 

Nonetheless,while a number of studies demonstrate 
that stimulation of A2B adenosine receptor in some 
cancer cell types promotes proliferation, whereby 
knockdown or pharmacological inhibition of this 
receptor reduces tumor cell growth and promotes 
apoptosis,[107-111] opposite results have been also 
described.[112,113] The discrepancy might likely depend 
on the cancer cell types, the expression levels of this 
receptor on tumor cells and the selectivity and/or 
concentrations of pharmacological tools used in the 
experimental settings.

It has been demonstrated that agonists of A2B 
receptor induce anti-proliferative and pro-apoptotic 
effects on glioblastoma cancer stem cells (CSCs).[115] 
Furthermore, stimulation of A2B receptors as well 
as A1 receptors sensitize glioblastoma CSCs to 
chemotherapy.[115]

A role of A2B receptor in promoting the migration 
of tumor cells in vitro and in vivo has been clearly 



                Journal of Cancer Metastasis and Treatment ¦ Volume 3 ¦ July 17, 2017

Sorrentino et al.                                                                                                                                                                               Role of A2B receptor in cancer

133

demonstrated. Indeed, a number of studies show 
that adenosine may directly influence the migration/
invasion of tumor cells via A2B adenosine receptor. 
Stagg et al.[42] have demonstrated that targeting 
the adenosine-generating enzyme CD73 inhibits 
tumor growth in mice and significantly delays the 
development of spontaneous lung metastasis.While 
the effect of anti-CD73 monoclonal antibody therapy 
on primary tumor growth relays on its capacity to 
improve immune surveillance, the anti-metastatic 
effects to the lungs is rather dependent on a direct 
effect of CD73-generating adenosine on breast 
tumor-cell migration via A2B adenosine receptors 
stimulation.[42] Consistent with the role of A2B receptor 
in promoting metastasis of breast cancer cells to the 
lung, administration of selective or non-selective A2B 
receptor antagonists into mice significantly reduced 
metastasis burden.[42,104] Furthermore, antagonists 
of A2B receptor preferentially inhibits the invasive 
capacity of breast cancer cells expressing Fos-related 
antigen-1 (Fra-1), a transcription factor overexpressed 
in human metastatic breast cancers.[116] Therefore, 
the authors suggest that Fra-1 activity is a prognostic 
indicator of both breast cancer metastasis and 
responsiveness to pharmacological inhibitors, such 
as A2B receptor antagonists.[116]

In a recent paper it has been demonstrated that 
high expression of A2B receptor is associated with 
poor survival in triple negative breast cancer (TNBC) 
patients.[57] As mentioned above, these authors 
demonstrate that A2B receptor antagonist prevents 
metastasis of A2B receptor-expressing tumor cells and 
improves survival when administered in combination 
with chemotherapeutic agents and immune checkpoints 
inhibitors monoclonal antibodies in both experimental 
and spontaneous murine models of metastasis.[57] 
The anti-metastatic effects of A2B receptor antagonists 
is independent on lymphocytes and myeloid cells, 
whilst tumor A2B receptor is critical.[57] These evidence 
highlight that A2B receptor may be an attractive target 
for treatment of breast metastasis.

A2B adenosine receptor can also contribute to the pro-
angiogenic effects of adenosine in the tumor milieu. 
Vascular endothelial growth factor (VEGF) is a well-
known mediator critically involved in tumor progression 
and angiogenesis.[117] A number of studies linked 
VEGF production to adenosine A2B receptor in human 
endothelial cells,[118,119] in some tumor cell lines[120,121] 
and in host immune cells, including dendritic cells and 
myeloid-derived suppressor cells.[72,80,122]

A2B receptor is expressed on human endothelial cells 
and its stimulation promotes the expression of several 

pro-angiogenic factors, including VEGF, IL-8 and basic 
fibroblast growth factor (bFGF).[118] Importantly, under 
hypoxic conditions the expression of A2B receptor in 
endothelial and smooth muscle cells increased and 
the stimulation of these receptors further enhance 
VEGF release.[119] Hypoxia is a common feature of 
tumor and can induce angiogenesis. At the same time, 
adenosine, whose levels became elevated during 
hypoxia, further enhances angiogenesis by stimulating 
A2B receptors, creating a positive feedback between 
hypoxia, adenosine and VEGF.

Other studies also indicate that adenosine promotes 
the release of angiogenic factors, namely VEGF 
and IL-8, in some cancer cells lines, via A2B receptor 
including human melanoma cells[120] and glioblastoma 
cells, which express high levels of A2B receptor under 
hypoxic conditions.[121]

Using A2B receptor deficient mice, Ryzhov et al.[72] 
firstly demonstrated the critical role of A2B receptor 
in modulating the VEGF levels in tumor tissues. 
Importantly, vascularization and tumor tissue VEGF 
levels were significantly reduced in A2B receptor 
deficient mice compared with WT mice.[72] This effect 
was associated with reduced tumor infiltration of 
VEGF-producing myeloid cells, suggesting that A2B 
receptor can modulate the release of VEGF either 
from tumor cells and from host tumor-infiltrating 
immune cells,[72] that can contribute to promote tumor 
angiogenesis.[123] As mentioned above, adenosine 
promotes the differentiation of dendritic cells precursors 
into a subset of DC that produce angiogenic factors, 
including VEGF, and other immunosuppressive factors 
via A2B adenosine receptor.[80] Notably, A2B-stimulated 
dendritic cells are able to promote tumor growth when 
injected into mice.[80] These observations strongly 
suggest that adenosine sustains tumor angiogenesis 
during tumor growth by stimulating the release of 
VEGF from endothelial cells, tumor cells and immune 
cells. Accordingly, targeting CD73 in mice impairs 
tumor angiogenesis and decreases VEGF levels, 
at least in part by lowering adenosine generation in 
tumor environment that activates A2B receptors.[124] 
Therefore, targeting CD73 and/or A2B receptor may 
represent a potential therapeutic strategy to block 
angiogenesis. In support of this, the pharmacological 
blockade of A2B receptor with a selective antagonist in 
mice significantly reduces the tumor levels of VEGF 
and CD31 positive cells within tumor lesions.[122] 
Moreover, the anti-angiogenic effect of A2B receptor 
antagonists is, at least in part, dependent on the lower 
frequency of tumor-infiltrating suppressive myeloid 
cells (MDSCs),[72,122] breaking the positive feedback 
loop that promotes angiogenesis and MDSC-mediated 
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immune suppression in the tumor environment. 
Recent evidence indicate that A2B receptor stimulation 
promotes the release of FGF-2 and C-X-C motif 
chemokine ligand 12 (CXCL12) from tumor-associated 
fibroblasts,[125] that contribute to promote tumor growth 
and angiogenesis.[126] These effects are associated 
with reduced expression of fibroblast activation 
protein (FAP), a common marker of tumor-activated 
fibroblasts termed cancer-associated fibroblasts 
(CAF), that promote tumor growth enhancing tumor 
immune evasion and tumor vascularization.[127] A2B 
receptor-induced CXCL12 by tumor-associated 
fibroblasts contributes to the pro-angiogenic effects of 
A2B receptor via CXCR4, suggesting a link between 
tumor fibroblasts and endothelial cells.[127] Moreover, 
fibroblasts express CD73, which is up-regulated under 
hypoxic conditions.[127] Altogether, these evidence 
suggest that in the context of tumor A2B receptor 
contributes to mediate multiple effects of adenosine on 
different types of cells that populate the tumor niche. 
Furthermore, blockade of A2B receptor modulates the 
intra-tumoral levels of paracrine factors, which are 
critical in regulating intercellular crosstalk in the tumor 
microenvironment.

Although the predominant role of A2A receptor in 

mediating the immunosuppressive effects of adenosine 
in the tumor tissue and the high therapeutic potential of 
blocking adenosine generation and the A2A-mediated 
effects, by using anti-CD73 monoclonal antibodies and 
A2A selective antagonists, respectively, it is becoming 
clear that A2B receptor may significantly affect tumor 
progression and metastasis. Its contribute to tumor 
development and growth is most likely dependent 
on its high expression levels on tumor cells, and/or 
endothelial cells and/or other tumor-infiltrating cells, in 
a rich adenosine environment.

CONCLUSION

Adenosine plays a critical role in tumor immunity, 
angiogenesis and metastasis process. Strategies 
aimed to inhibit tumor adenosine production and 
functions, by using CD73 inhibitors and selective 
blockade of A2A adenosine receptor, are effective for 
cancer treatments, especially in combination with 
chemotherapeutic agents and immune-checkpoints 
inhibitors.

Nonetheless, compelling evidence support the 
role of A2B receptor subtype in contributing to the 
pro-tumor effects of adenosine within the tumor 

Figure 1: Multiple roles of A2B adenosine receptors in cancer. A2B receptor stimulation induces (1) the differentiation of human monocytes, 
mouse peritoneal macrophages (φ) and hematopoietic progenitor cells (HPCs) into tolerogenic dendritic cells (DCs); (2) the expansion and 
accumulation of MDSCs; (3) Treg differentiation, enhancing immune suppression that inhibits T-cell responses. Activation of A2B receptors 
on stroma cells, including tumor cells, endothelial cells and fibroblasts promotes tumor proliferation or invasion and angiogenesis. TNBC: 
triple negative breast cancer; VEGF: vascular endothelial growth factor; IL-8: interleukin-8; bFGF: basic fibroblast growth factor; CXCL12: 
C-X-C motif chemokine ligand 12; MDSCs: myeloid-derived suppressor cells
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microenvironment, including immune suppression, 
angiogenesis and metastasis [Figure 1]. Despite 
these evidence, further studies are needed to 
better investigate thoroughly the mechanisms by 
which blockers of this receptor limit tumor growth. 
Understanding the relative role of A2B receptor in 
tumor, depending on the cell types, on its distribution 
and expression, will help to potentially apply A2B 
receptor-targeting agents for cancer treatment.
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