REFERENCES

1. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics. CA Cancer J Clin 2014;64:9-29.

2. Tran-Thanh D, Done SJ. The role of stromal factors in breast tumorigenicity. Am J Pathol 2010;176:1072-74.

3. Amicone L, Marchetti A. Microenvironment and tumor cells: two targets for new molecular therapies of hepatocellular carcinoma. Transl Gastroenterol Hepatol 2018;3:24.

4. Liu Q, Zhang H, Jiang X, Qian C, Liu Z, et al. Factors involved in cancer metastasis: a better understanding to “seed and soil” hypothesis. Mol Cancer 2017;16:176.

5. Nieto MA, Huang RY, Jackson RA, Thiery JP. Emt: 2016. Cell 2016;166:21-45.

6. Mukherjee D, Zhao J. The role of chemokine receptor CXCR4 in breast cancer metastasis. Am J Cancer Res 2013;3:46-57.

7. Gupta GP, Massague J. Cancer metastasis: building a framework. Cell 2006;127:679-95.

8. Minciacchi VR, Freeman MR, Di Vizio D. Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev Biol 2015;40:41-51.

9. Peinado H, Lavotshkin S, Lyden D. The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin Cancer Biol 2011;21:139-46.

10. Cavallaro S. CXCR4/CXCL12 in non-small-cell lung cancer metastasis to the brain. Int J Mol Sci 2013;14:1713-27.

11. Mizejewski GJ. Breast cancer, chemokines, and metastases: a search for decoy ligands of the CXCR4 receptor. J Neoplasms 2018;1:1-9.

12. Tran-Thanh D, Done SJ. The role of stromal factors in breast tumorigenicity. Am J Pathol 2010;176:1072-4.

13. Scala S. Molecular Pathways: Targeting the CXCR4-CXCL12 axis--untapped potential in the tumor microenvironment. Clin Cancer Res 2015;21:4278-85.

14. Angst BD, Marcozzi C, Magee AI. The cadherin superfamily: diversity in form and function. J Cell Sci 2001;114:629-41.

15. Hulpiau P, van Roy F. Molecular evolution of the cadherin superfamily. Int J Biochem Cell Biol 2009;41:349-69.

16. Mizejewski GJ. The third domain ligand binding fragment of alpha-fetoprotein: detection of metastasis-associated molecular targets. Canc Therapy & Oncol Intl J 2017;6:1-15.

17. Newman PJ, Newman DK. Signal transduction pathways mediated by PECAM-1: new roles for an old molecule in platelet and vascular cell biology. Arterioscler Thromb Vasc Biol 2003;23:953-64.

18. Nagase H, Woessner JF Jr. Matrix metalloproteinases. J Biol Chem 1999;274:21491-4.

19. Zhu P, Sun Y, Xu R, Sang Y, Zhao J, et al. The interaction between ADAM 22 and 14-3-3zeta: regulation of cell adhesion and spreading. Biochem Biophys Res Commun 2003;301:991-999.

20. Collier IE, Bruns GA, Goldberg GI, Gerhard DS. On the structure and chromosome location of the 72- and 92-kDa human type IV collagenase genes. Genomics 1991;9:429-34.

21. White DJ, Puranen S, Johnson MS, Heino J. The collagen receptor subfamily of the integrins. Int J Biochem Cell Biol 2004;36:1405-10.

22. Hauptmann R, Maurer-Fogy I, Krystek E, Bodo G, Andree H, et al. Vascular anticoagulant beta: a novel human Ca2+/phospholipid binding protein that inhibits coagulation and phospholipase A2 activity. Its molecular cloning, expression and comparison with VAC-alpha. Eur J Biochem 1989;185:63-71.

23. Ornitz DM, Xu J, Colvin JS, McEwen DG, MacArthur CA, et al. Receptor specificity of the fibroblast growth factor family. J Biol Chem 1996;271:15292-7.

24. Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, et al. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 2001;411:613-7.

25. Lee J, Horuk R, Rice GC, Bennett GL, Camerato T, et al. Characterization of two high affinity human interleukin-8 receptors. J Biol Chem 1992;267:16283-7.

26. Yamda Y, Post SR, Wang K, Tager HS, Bell GI, et al. Cloning and functional characteristic of a family of human somatostatin receptors expressed in brain, gastrointestinal tract and kidney. J N Acad Sci (USA) 1992;89:251-5.

27. Ron D, Reich R, Chedid M, Lengel C, Cohen OE, et al. Fibroblast growth factor receptor 4 is a high affinity receptor for both acidic and basic fibroblast growth factor but not for keratinocyte growth factor. J Biol Chem 1993;268:5388-94.

28. Muller YA, Li B, Christinger HW, Wells JA, Cunningham BC, de Vos AM. Vascular endothelial growth factor: crystal structure and functional mapping of the kinase domain receptor binding site. Proc Natl Acad Sci USA 1997;94:7192-7.

29. Isobe M, Emanuel BS, Givol D, Oren M, Croce CM. Localization of gene for human p53 tumour antigen to band 17p13. Nature 1986;320:84-5.

30. Critton DA, Tortajada A, Stetson G, Peti W, Page R. Structural basis of substrate recognition by hematopoietic tyrosine phosphatase. Biochemistry 2008;47:13336-45.

31. Muehlemann M, Miller KD, Dauphinee M, Mizejewski GJ. Review of growth inhibitory peptide as a biotherapeutic agent for tumor growth, adhesion, and metastasis. Cancer Metastasis Rev 2005;24:441-467.

32. Mizejewski GJ. Cancer, circulating tumor cells, and metastasis: could protein-derived peptide fragments impede brain metastasis? J Cancer Metastasis Treat 2018;4:27.

33. Chiquet-Ehrismann R, Chiquet M. Tenascins: regulation and putative functions during pathological stress. J Pathol 2003;200:488-99.

34. Cao Y, Ji RW, Davidson D, Schaller J, Marti D, et al. Kringle domains of human angiostatin. Characterization of the anti-proliferative activity on endothelial cells. J Biol Chem 1996;271:29461-7.

35. Folkman J. Antiangiogenesis in cancer therapy--endostatin and its mechanisms of action. Exp Cell Res 2006;312:594-607.

36. Davenport AP, Hyndman KA, Dhaun N, Southan C, Kohan DE, et al. Endothelin. Pharmacol Rev 2016;68:357-418.

37. Mizejewski GJ, MacColl R. Alpha-fetoprotein growth inhibitory peptides: potential leads for cancer therapeutics. Mol Cancer Ther 2003;2:1243-55.

38. Mizejewski GJ, Butterstein G. Survey of functional activities of alpha-fetoprotein derived growth inhibitory peptides: review and prospects. Curr Protein Pept Sci 2006;7:73-100.

39. Mizejewski GJ, Muehlemann M, Dauphinee M. Update of alpha fetoprotein growth-inhibitory peptides as biotherapeutic agents for tumor growth and metastasis. Chemotherapy 2006;52:83-90.

40. Mizejewski GJ. The alpha-fetoprotein-derived growth inhibitory peptide 8-mer fragment: review of a novel anticancer agent. Cancer Biother Radiopharm 2007;22:73-98.

41. Mizejewski GJ. The alpha-fetoprotein (AFP) third domain: a search for AFP interaction sites of cell cycle proteins. Tumour Biol 2016;37:12697-711.

42. Mizejewski GJ. Review of the putative cell-surface receptors for alpha-fetoprotein: identification of a candidate receptor protein family. Tumour Biol 2011;32:241-58.

43. Mizejewski GJ. Peptides as receptor ligand drugs and their relationship to G-coupled signal transduction. Expert Opin Investig Drugs 2001;10:1063-73.

44. Mizejewski GJ. Mechanism of cancer growth suppression of alpha-fetoprotein derived growth inhibitory peptides (GIP): comparison of GIP-34 versus GIP-8 (AFPep). Updates and Prospects. Cancers (Basel) 2011;3:2709-33.

45. Hernandez I, Smirnova T, Kedrin D, Wyckoff J, Zhu L, et al. The EGF/ESF-1 paracrine loop can be triggered by heregulin beta-1 and CXCL 12. Cancer Res 2009;69:3221-327.

Journal of Cancer Metastasis and Treatment
ISSN 2454-2857 (Online) 2394-4722 (Print)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/