fig1

Peptide nucleic acid-based targeting of microRNAs: possible therapeutic applications for glioblastoma

Figure 1. Scheme summarizing the miRNA replacement (A) and anti-miRNA (B) approaches to modify miRNA-regulated gene expression. In panel A the miRNA replacement molecule is transfected to target cells (a) where interact with the mRNA to be modulated (b) causing inhibition of protein production (c, dotted arrow). In panel B the miRNA inhibitors (a-c) are transfected to target cells (d) where they interact with the microRNA target preventing its binding to the specific 3’UTR sequence (dotted arrow) of the regulated mRNA (d). This causes up-regulation of this mRNA with increased protein production (e). Three examples of antagomiRNA molecules are shown: microparticle delivered antagomiRNAs (a), peptide-delivered molecules (b, peptide in green), or chemically-modified molecules (chemical modifications in yellows) to increase biological functions (for instance resistance to enzymatic degradation or delivery efficiency to target cells)

Journal of Cancer Metastasis and Treatment
ISSN 2454-2857 (Online) 2394-4722 (Print)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/