REFERENCES

1. Sheikh I, Sharma V, Tuli HS, Aggarwal D, Sankhyan A, Vyas P, et al. Cancer Chemoprevention by Flavonoids, Dietary Polyphenols and Terpenoids. Biointerface Res Appl Chem 2020;11:8502-37.

2. Vignesh S, Raja A, Arthur Jam R. Marine Drugs: Implication and Future Studies. Int J Pharmacol 2010;7:22-30.

3. King RJB, Robins MW. Cancer biology. Harlow, Essex, UK: Pearson Prentice Hall; 2006.

4. Ruan BF, Ge WW, Lin MX, Li QS. A Review of the Components of Seaweeds as Potential Candidates in Cancer Therapy. Anticancer Agents Med Chem 2018;18:354-66.

5. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394-424.

6. Brown EM, Allsopp PJ, Magee PJ, et al. Seaweed and human health. Nutr Rev 2014;72:205-16.

7. Cotas J, Marques V, Afonso MB, Rodrigues CMP, Pereira L. Antitumour Potential of Gigartina pistillata Carrageenans against Colorectal Cancer Stem Cell-Enriched Tumourspheres. Mar Drugs 2020;18:50.

8. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005;55:74-108.

9. Gersten O, Wilmoth JR. The Cancer Transition in Japan since 1951. DemRes 2002;7:271-306.

10. Maule M, Merletti F. Cancer transition and priorities for cancer control. Lancet Oncol 2012;13:745-6.

11. Chinnababu B, Purushotham Reddy S, Sankara Rao P, et al. Isolation, semi-synthesis and bio-evaluation of spatane derivatives from the brown algae Stoechospermum marginatum. Bioorg Med Chem Lett 2015;25:2479-83.

12. Déléris P, Nazih H, Bard J. Seaweeds in Human Health. Seaweed in Health and Disease Prevention. Elsevier; 2016. pp. 319-67.

13. Kolb N, Vallorani L, Milanović N, Stocchi V. Evaluation of Marine Algae Wakame (Undaria pinnatifida) and Kombu (Laminaria digitata japonica) as Food Supplements. Food Technol Biotechnol 2004;42:57-61.

14. Taboada MC, Millán R, Miguez MI. Nutritional value of the marine algae wakame (Undaria pinnatifida) and nori (Porphyra purpurea) as food supplements. J Appl Phycol 2013;25:1271-6.

15. Pereira L. Seaweeds as source of bioactive substances and skin care therapy-Cosmeceuticals, algotheraphy, and thalassotherapy. Cosmetics 2018;5:68.

16. García-Poza S, Leandro A, Cotas C, et al. The Evolution Road of Seaweed Aquaculture: Cultivation Technologies and the Industry 4.0. Int J Environ Res Public Health 2020;17:6528.

17. Ruperez P. Mineral content of edible marine seaweeds. Food Chem 2002;79:23-6.

18. Wali AF, Majid S, Rasool S, et al. Natural products against cancer: Review on phytochemicals from marine sources in preventing cancer. Saudi Pharm J 2019;27:767-77.

19. Leandro A, Pereira L, Gonçalves AMM. Diverse Applications of Marine Macroalgae. Mar Drugs 2019;18:17.

20. Kim SK. Handbook of Marine Macroalgae. Chichester, UK: John Wiley & Sons, Ltd; 2011.

21. Francavilla M, Franchi M, Monteleone M, Caroppo C. The red seaweed Gracilaria gracilis as a multi products source. Mar Drugs 2013;11:3754-76.

22. Giordano M, Beardall J, Raven JA. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 2005;56:99-131.

23. Rodrigues D, Freitas AC, Pereira L, et al. Chemical composition of red, brown and green macroalgae from Buarcos bay in Central West Coast of Portugal. Food Chem 2015;183:197-207.

24. Shannon E, Abu-ghannam N. Seaweeds as nutraceuticals for health and nutrition. Phycologia 2019;58:563-77.

25. Nunes N, Valente S, Ferraz S, Barreto MC, Pinheiro de Carvalho MAA. Nutraceutical potential of Asparagopsis taxiformis (Delile) Trevisan extracts and assessment of a downstream purification strategy. Heliyon 2018;4:e00957.

26. Pereira L. Edible Seaweeds of the World. Boca Raton, FL, USA: CRC Press; 2016.

27. Rajapakse N, Kim S. Nutritional and Digestive Health Benefits of Seaweed. Marine Medicinal Foods - Implications and Applications, Macro and Microalgae. Elsevier; 2011. pp. 17-28.

28. Mišurcová L, Machů L, Orsavová J. Seaweed Minerals as Nutraceuticals. Marine Medicinal Foods - Implications and Applications, Macro and Microalgae. Elsevier; 2011. pp. 371-90.

29. Černá M. Seaweed proteins and amino acids as nutraceuticals. In: Kim SK, editor. Advances in food and nutrition research. San Diego: Academic Press; 2011. pp. 297-312.

30. Macartain P, Gill CI, Brooks M, Campbell R, Rowland IR. Nutritional Value of Edible Seaweeds. Nutr Rev 2007;65:535-43.

31. Ganesan AR, Tiwari U, Rajauria G. Seaweed nutraceuticals and their therapeutic role in disease prevention. Food Sci Hum Wellness 2019;8:252-63.

32. Tanna B, Mishra A. Metabolites Unravel Nutraceutical Potential of Edible Seaweeds: An Emerging Source of Functional Food. Compr Rev Food Sci Food Saf 2018;17:1613-24.

33. Lopes G, Sousa C, Valentão P, Andrade PB. Sterols in Algae and Health. In: Hernández-ledesma B, Herrero M, editors. Bioactive Compounds from Marine Foods. Chichester: John Wiley & Sons Ltd; 2013. pp. 173-91.

34. Alves C, Silva J, Pinteus S, et al. From Marine Origin to Therapeutics: The Antitumor Potential of Marine Algae-Derived Compounds. Front Pharmacol 2018;9:777.

35. Leandro A, Pacheco D, Cotas J, Marques JC, Pereira L, Gonçalves AMM. Seaweed’s Bioactive Candidate Compounds to Food Industry and Global Food Security. Life (Basel) 2020;10:140.

36. Moon C, Kim SH, Kim JC, et al. Protective effect of phlorotannin components phloroglucinol and eckol on radiation-induced intestinal injury in mice. Phytother Res 2008;22:238-42.

37. Park E, Ahn G, Yun JS, et al. Dieckol rescues mice from lethal irradiation by accelerating hemopoiesis and curtailing immunosuppression. Int J Radiat Biol 2010;86:848-59.

38. Zhang R, Kang KA, Piao MJ, et al. Eckol protects V79-4 lung fibroblast cells against gamma-ray radiation-induced apoptosis via the scavenging of reactive oxygen species and inhibiting of the c-Jun NH(2)-terminal kinase pathway. Eur J Pharmacol 2008;591:114-23.

39. Kang KA, Zhang R, Lee KH, et al. Protective effect of triphlorethol-A from Ecklonia cava against ionizing radiation in vitro. J Radiat Res 2006;47:61-8.

40. Wang Z, Li H, Dong M, Zhu P, Cai Y. The anticancer effects and mechanisms of fucoxanthin combined with other drugs. J Cancer Res Clin Oncol 2019;145:293-301.

41. Gutiérrez-Rodríguez AG, Juárez-Portilla C, Olivares-Bañuelos T, Zepeda RC. Anticancer activity of seaweeds. Drug Discov Today 2018;23:434-47.

42. Jiang J, Shi S. Seaweeds and Cancer Prevention. Bioactive Seaweeds for Food Applications. Elsevier; 2018. pp. 269-90.

43. Rocha DHA, Seca AML, Pinto DCGA. Seaweed Secondary Metabolites In Vitro and In Vivo Anticancer Activity. Mar Drugs 2018;16:410.

44. Ismail MM, Alotaibi BS, El-Sheekh MM. Therapeutic Uses of Red Macroalgae. Molecules 2020;25:4411.

45. Murphy C, Hotchkiss S, Worthington J, Mckeown SR. The potential of seaweed as a source of drugs for use in cancer chemotherapy. J Appl Phycol 2014;26:2211-64.

46. Kumar CS, Ganesan P, Suresh P V., Bhaskar N. Seaweeds as a source of nutritionally beneficial compounds - a review. J Food Sci Technol 2008;45:1-13.

47. Cherry P, O’Hara C, Magee PJ, McSorley EM, Allsopp PJ. Risks and benefits of consuming edible seaweeds. Nutr Rev 2019;77:307-29.

48. Ferdouse F, Løvstad Holdt S, Smith R, Murúa P, Yang Z. The global status of seaweed production, trade and utilization. FAO Globefish Res Program 2018;124:120.

49. Babahan I, Kirim B, Mehr H. Major Natural Vegetation in Coastal and Marine Wetlands: Edible Seaweeds. In: T. Oliveira M, Candan F, Fernandes-silva A, editors. Plant Communities and Their Environment. IntechOpen; 2020.

50. Novaczek I, Athy A. Sea vegetable recipes for the Pacific Islands. The University of the South Pacific; 2001.

51. Unidade de Bioquímica M. Seaweed Recipes. 2020. Available from https://www.ubqmadeira.com/en/category/receitas/. [Last accessed on 5 Mar 2021].

52. Pacheco D, Araújo GS, Cotas J, Gaspar R, Neto JM, Pereira L. Invasive Seaweeds in the Iberian Peninsula: A Contribution for Food Supply. Mar Drugs 2020;18:560.

53. Park Y, Lee J, Oh JH, Shin A, Kim J. Dietary patterns and colorectal cancer risk in a Korean population: A case-control study. Medicine (Baltimore) 2016;95:e3759.

54. Nelson SM, Gao YT, Nogueira LM, et al. Diet and biliary tract cancer risk in Shanghai, China. PLoS One 2017;12:e0173935.

55. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011;61:69-90.

56. Ferlay J, Parkin DM, Steliarova-Foucher E. Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer 2010;46:765-81.

57. Drewnowski A, Popkin BM. The nutrition transition: new trends in the global diet. Nutr Rev 1997;55:31-43.

58. Wahlqvist M, Kouris-Blazos A, Crotty P, Worsley T, Harvey P, Tieru H C-SL. Health and nutritional needs in the western pacific: culturally related areas which may be addressed by FBDGs. In: WHO Regional Office for the Western Pacific, editor. Development of food-based dietary guidelines for the Western Pacific region. WHO Region. Manila, Philippines: World Health Organization; 1999. pp. 19-31.

59. Iso H, Kubota Y; Japan Collaborative Cohort Study for Evaluation of Cancer. Nutrition and disease in the Japan Collaborative Cohort Study for Evaluation of Cancer (JACC). Asian Pac J Cancer Prev 2007;8 Suppl:35-80.

60. Sá Monteiro M, Sloth J, Holdt S, Hansen M; National Food Institute, Technical University of Denmark, Denmark. Analysis and Risk Assessment of Seaweed. EFSA J 2019;17:e170915.

61. Ownsworth E, Selby D, Ottley CJ, et al. Tracing the natural and anthropogenic influence on the trace elemental chemistry of estuarine macroalgae and the implications for human consumption. Sci Total Environ 2019;685:259-72.

62. Teas J, Braverman LE, Kurzer MS, Pino S, Hurley TG, Hebert JR. Seaweed and soy: companion foods in Asian cuisine and their effects on thyroid function in American women. J Med Food 2007;10:90-100.

63. Fleurence J. Seaweed proteins. Trends Food Sci Technol 1999;10:25-8.

64. Ramu Ganesan A, Subramani K, Shanmugam M, et al. A comparison of nutritional value of underexploited edible seaweeds with recommended dietary allowances. J King Saud Univ - Sci 2020;32:1206-11.

65. Kalasariya H.S., Patel R.V., Pandya K.Y., Jasrai R.T., Brahmbhatt NH. A review on nutritional facets of seaweeds. Int J Chem Sci Tech 2016;1:27-32.

66. Syad AN, Shunmugiah KP, Kasi PD. Seaweeds as nutritional supplements: Analysis of nutritional profile, physicochemical properties and proximate composition of G. acerosa and S. wightii. Biomed Prev Nutr 2013;3:139-44.

67. Balagopal P, George D, Patton N, et al. Lifestyle-only intervention attenuates the inflammatory state associated with obesity: a randomized controlled study in adolescents. J Pediatr 2005;146:342-8.

68. Wong K, Cheung PC. Nutritional evaluation of some subtropical red and green seaweeds. Food Chem 2000;71:475-82.

69. Klop B, Elte JW, Cabezas MC. Dyslipidemia in obesity: mechanisms and potential targets. Nutrients 2013;5:1218-40.

70. Al-Khalaifah H. Modulatory Effect of Dietary Polyunsaturated Fatty Acids on Immunity, Represented by Phagocytic Activity. Front Vet Sci 2020;7:569939.

71. Patarra RF, Paiva L, Neto AI, Lima E, Baptista J. Nutritional value of selected macroalgae. J Appl Phycol 2011;23:205-8.

72. Matsumura Y. Nutrition trends in Japan. Asia Pac J Clin Nutr 2001;10:S40-7.

73. Murai U, Yamagishi K, Sata M, et al; JPHC Study Group. Seaweed intake and risk of cardiovascular disease: the Japan Public Health Center-based Prospective (JPHC) Study. Am J Clin Nutr 2019;110:1449-55.

74. Bhutta Z, Sadiq K. Protein Deficiency. Encyclopedia of Human Nutrition. Elsevier; 2013. pp. 111-5.

75. Heymsfield SB, Avena NM, Baier L, et al. Hyperphagia: current concepts and future directions proceedings of the 2nd international conference on hyperphagia. Obesity (Silver Spring) 2014;22 Suppl 1:S1-S17.

76. Rosenbaum M, Leibel RL. Adaptive thermogenesis in humans. Int J Obes (Lond) 2010;34 Suppl 1:S47-55.

77. Madhusudan C, Manoj S, Rahul K, Rishi CM. Seaweeds: A Diet with Nutritional, Medicinal and Industrial Value. Res J Med Plant 2011;5:153-7.

78. Guo F, Huang C, Cui Y, Momma H, Niu K, Nagatomi R. Dietary seaweed intake and depressive symptoms in Japanese adults: a prospective cohort study. Nutr J 2019;18:58.

79. Machado M, Machado S, Pimentel FB, Freitas V, Alves RC, Oliveira MBPP. Amino Acid Profile and Protein Quality Assessment of Macroalgae Produced in an Integrated Multi-Trophic Aquaculture System. Foods 2020;9:1382.

80. Percival E, Smestad B. Photosynthetic studies on Ulva lactuca. Phytochemistry 1972;11:1967-72.

81. Kadam SU, Tiwari BK, O’donnell CP. Extraction, structure and biofunctional activities of laminarin from brown algae. Int J Food Sci Technol 2015;50:24-31.

82. Devillé C, Damas J, Forget P, Dandrifosse G, Peulen O. Laminarin in the dietary fibre concept. J Sci Food Agric 2004;84:1030-8.

83. Valado A, Pereira M, Caseiro A, et al. Effect of Carrageenans on Vegetable Jelly in Humans with Hypercholesterolemia. Mar Drugs 2019;18:19.

84. Cardoso I, Cotas J, Rodrigues A, Ferreira D, Osório N, Pereira L. Extraction and Analysis of Compounds with Antibacterial Potential from the Red Alga Grateloupia turuturu. JMSE 2019;7:220.

85. Zhang Z, Zhang Q, Wang J, Song H, Zhang H, Niu X. Regioselective syntheses of sulfated porphyrans from Porphyra haitanensis and their antioxidant and anticoagulant activities in vitro. Carbohydrate Polymers 2010;79:1124-9.

86. Zargarzadeh M, Amaral AJR, Custódio CA, Mano JF. Biomedical applications of laminarin. Carbohydr Polym 2020;232:115774.

87. Sony NM, Ishikawa M, Hossain MS, Koshio S, Yokoyama S. The effect of dietary fucoidan on growth, immune functions, blood characteristics and oxidative stress resistance of juvenile red sea bream, Pagrus major. Fish Physiol Biochem 2019;45:439-54.

88. Cui H, Wang Z, Liu J, et al. Effects of a highly purified fucoidan from Undaria pinnatifida on growth performance and intestine health status of gibel carp Carassius auratus gibelio. Aquacult Nutr 2019;26:47-59.

89. Nagamine T, Nakazato K, Tomioka S, Iha M, Nakajima K. Intestinal absorption of fucoidan extracted from the brown seaweed, Cladosiphon okamuranus. Mar Drugs 2014;13:48-64.

90. Zhao X, Guo F, Hu J, et al. Antithrombotic activity of oral administered low molecular weight fucoidan from Laminaria Japonica. Thromb Res 2016;144:46-52.

91. Wu SY, Parasuraman V, Hsieh-Chih-Tsai, et al. Radioprotective effect of self-assembled low molecular weight Fucoidan-Chitosan nanoparticles. Int J Pharm 2020;579:119161.

92. Brownlee IA, Allen A, Pearson JP, et al. Alginate as a source of dietary fiber. Crit Rev Food Sci Nutr 2005;45:497-510.

93. Teas J, Vena S, Cone DL, Irhimeh M. The consumption of seaweed as a protective factor in the etiology of breast cancer: proof of principle. J Appl Phycol 2013;25:771-9.

94. Padayatty SJ, Katz A, Wang Y, et al. Vitamin C as an antioxidant: evaluation of its role in disease prevention. J Am Coll Nutr 2003;22:18-35.

95. Kong X, Du L, Du G. Vitamin A. Natural Small Molecule Drugs from Plants. Singapore: Springer; 2018. pp. 627-31.

96. Allen L, De Benoist B, Dary O, Hurrell R, Horton S, Lewis J, et al. Guidelines on food fortification with micronutrients. World Heal. Geneva, Switzerland: World Health Organization Press; 2006.

97. Mora JR, Iwata M, von Andrian UH. Vitamin effects on the immune system: vitamins A and D take centre stage. Nat Rev Immunol 2008;8:685-98.

98. Pereira L. A review of the nutrient composition of selected edible seaweeds. In: Pomin VH, editor. Seaweed: Ecology, Nutrient Composition and Medicinal Uses. Hauppauge, NY, USA: Nova Science Publishers, Inc.; 2011. pp. 15-47.

99. Miyashita K, Mikami N, Hosokawa M. Chemical and nutritional characteristics of brown seaweed lipids: A review. J Funct Foods 2013;5:1507-17.

100. Watzl B, Kulling SE, Möseneder J, Barth SW, Bub A. A 4-wk intervention with high intake of carotenoid-rich vegetables and fruit reduces plasma C-reactive protein in healthy, nonsmoking men. Am J Clin Nutr 2005;82:1052-8.

101. Stead SM. Rethinking marine resource governance for the United Nations Sustainable Development Goals. Curr Opin Environ Sustain 2018;34:54-61.

102. Vieira EF, Soares C, Machado S, et al. Seaweeds from the Portuguese coast as a source of proteinaceous material: Total and free amino acid composition profile. Food Chem 2018;269:264-75.

103. Maeda H, Yamamoto R, Hirao K, Tochikubo O. Effects of agar (kanten) diet on obese patients with impaired glucose tolerance and type 2 diabetes. Diabetes Obes Metab 2005;7:40-6.

104. Mysliwa-Kurdziel B, Solymosi K. Phycobilins and Phycobiliproteins Used in Food Industry and Medicine. Mini Rev Med Chem 2017;17:1173-93.

105. Viera I, Pérez-Gálvez A, Roca M. Bioaccessibility of Marine Carotenoids. Mar Drugs 2018;16:397.

106. Galasso C, Corinaldesi C, Sansone C. Carotenoids from Marine Organisms: Biological Functions and Industrial Applications. Antioxidants (Basel) 2017;6:96.

107. Boominathan M, Mahesh A. Seaweed Carotenoids for Cancer Therapeutics. In: Kim S-K, editor. Handbook of Anticancer Drugs from Marine Origin. Cham, Switzerland: Springer International Publishing Switzerland; 2015. pp. 185-203.

108. Kotake-Nara E, Terasaki M, Nagao A. Characterization of apoptosis induced by fucoxanthin in human promyelocytic leukemia cells. Biosci Biotechnol Biochem 2005;69:224-7.

109. Gupta S, Abu-ghannam N. Recent developments in the application of seaweeds or seaweed extracts as a means for enhancing the safety and quality attributes of foods. Innov Food Sci Emerg Technol 2011;12:600-9.

110. Peñalver R, Lorenzo JM, Ros G, Amarowicz R, Pateiro M, Nieto G. Seaweeds as a Functional Ingredient for a Healthy Diet. Mar Drugs 2020;18:301.

111. Félix R, Carmona AM, Félix C, Novais SC, Lemos MFL. Industry-Friendly Hydroethanolic Extraction Protocols for Grateloupia turuturu UV-Shielding and Antioxidant Compounds. Appl Sci 2020;10:5304.

112. Eriksen NT. Production of phycocyanin--a pigment with applications in biology, biotechnology, foods and medicine. Appl Microbiol Biotechnol 2008;80:1-14.

113. Stengel DB, Connan S, Popper ZA. Algal chemodiversity and bioactivity: sources of natural variability and implications for commercial application. Biotechnol Adv 2011;29:483-501.

114. Nguyen HPT, Morançais M, Déléris P, et al. Purification of R-phycoerythrin from a marine macroalga Gracilaria gracilis by anion-exchange chromatography. J Appl Phycol 2020;32:553-61.

115. Yu P, Wu Y, Wang G, Jia T, Zhang Y. Purification and bioactivities of phycocyanin. Crit Rev Food Sci Nutr 2017;57:3840-9.

116. Pardhasaradhi BV V, Ali AM, Kumari AL, Reddanna P, Khar A. Phycocyanin-mediated apoptosis in AK-5 tumor cells involves down-regulation of Bcl-2 and generation of ROS. Mol Cancer Ther 2003;2:1165-70.

117. Jaiswal P, Singh PK, Prasanna R. Cyanobacterial bioactive molecules--an overview of their toxic properties. Can J Microbiol 2008;54:701-17.

118. Li W, Su HN, Pu Y, et al. Phycobiliproteins: molecular structure, production, applications, and prospects. Biotechnol Adv 2019;37:340-53.

119. Reddy MC, Subhashini J, Mahipal S, et al. C-Phycocyanin, a selective cyclooxygenase-2 inhibitor, induces apoptosis in lipopolysaccharide-stimulated RAW 264.7 macrophages. Biochem Biophys Res Commun 2003;304:385-92.

120. Shih SR, Tsai KN, Li YS, Chueh CC, Chan EC. Inhibition of enterovirus 71-induced apoptosis by allophycocyanin isolated from a blue-green alga Spirulina platensis. J Med Virol 2003;70:119-25.

121. Nagaraj S, Arulmurugan P, Rajaram M, et al. Hepatoprotective and antioxidative effects of C-phycocyanin from Arthrospira maxima SAG 25780 in CCl4-induced hepatic damage rats. Biomed Prev Nutr 2012;2:81-5.

122. Di Tomo P, Canali R, Ciavardelli D, et al. β-Carotene and lycopene affect endothelial response to TNF-α reducing nitro-oxidative stress and interaction with monocytes. Mol Nutr Food Res 2012;56:217-27.

123. Gori T, Münzel T. Oxidative stress and endothelial dysfunction: therapeutic implications. Ann Med 2011;43:259-72.

124. Guedes AC, Amaro HM, Malcata FX. Microalgae as sources of carotenoids. Mar Drugs 2011;9:625-44.

125. Gao S, Qin T, Liu Z, Caceres MA, Ronchi CF, Chen C-YO, et al. Lutein and zeaxanthin supplementation reduces H2O2-induced oxidative damage in human lens epithelial cells. Mol Vis 2011;17:3180-90.

126. Christaki E, Bonos E, Giannenas I, Florou-Paneri P. Functional properties of carotenoids originating from algae. J Sci Food Agric 2013;93:5-11.

127. Parjikolaei BR, Bruhn A, Eybye KL, et al. Valuable Biomolecules from Nine North Atlantic Red Macroalgae: Amino Acids, Fatty Acids, Carotenoids, Minerals and Metals. Natural Resources 2016;07:157-83.

128. Audibert L, Fauchon M, Blanc N, Hauchard D, Gall EA. Phenolic compounds in the brown seaweed Ascophyllum nodosum: distribution and radical-scavenging activities. Phytochem Anal 2010;21:399-405.

129. Generalić Mekinić I, Skroza D, Šimat V, Hamed I, Čagalj M, Popović Perković Z. Phenolic Content of Brown Algae (Pheophyceae) Species: Extraction, Identification, and Quantification. Biomolecules 2019;9:244.

130. Gómez-Guzmán M, Rodríguez-Nogales A, Algieri F, Gálvez J. Potential Role of Seaweed Polyphenols in Cardiovascular-Associated Disorders. Mar Drugs 2018;16:250.

131. Chen Y, Lin H, Li Z, Mou Q. The anti-allergic activity of polyphenol extracted from five marine algae. J Ocean Univ China 2015;14:681-4.

132. Murray M, Dordevic AL, Ryan L, Bonham MP. The Impact of a Single Dose of a Polyphenol-Rich Seaweed Extract on Postprandial Glycaemic Control in Healthy Adults: A Randomised Cross-Over Trial. Nutrients 2018;10:270.

133. Pangestuti R, Kim SK. Neuroprotective effects of marine algae. Mar Drugs 2011;9:803-18.

134. Holdt SL, Kraan S. Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 2011;23:543-97.

135. Liu M, Hansen PE, Lin X. Bromophenols in marine algae and their bioactivities. Mar Drugs 2011;9:1273-92.

136. Thomas NV, Kim SK. Potential pharmacological applications of polyphenolic derivatives from marine brown algae. Environ Toxicol Pharmacol 2011;32:325-35.

137. Tanna B, Brahmbhatt HR, Mishra A. Phenolic, flavonoid, and amino acid compositions reveal that selected tropical seaweeds have the potential to be functional food ingredients. J Food Process Preserv 2019;43.

138. Nwosu F, Morris J, Lund VA, Stewart D, Ross HA, Mcdougall GJ. Anti-proliferative and potential anti-diabetic effects of phenolic-rich extracts from edible marine algae. Food Chem 2011;126:1006-12.

139. Lopes G, Sousa C, Silva LR, et al. Can phlorotannins purified extracts constitute a novel pharmacological alternative for microbial infections with associated inflammatory conditions? PLoS One 2012;7:e31145.

140. Urquiaga I, Leighton F. Plant polyphenol antioxidants and oxidative stress. Biol Res 2000;33:55-64.

141. Pereira L. Therapeutic and Nutritional Uses of Algae. Boca Raton, FL, USA: CRC Press; 2018.

142. Ravikumar S, Jacob Inbaneson S, Suganthi P. Seaweeds as a source of lead compounds for the development of new antiplasmodial drugs from South East coast of India. Parasitol Res 2011;109:47-52.

143. Schultz JC, Hunter MD, Appel HM. Antimicrobial Activity of Polyphenols Mediates Plant-Herbivore Interactions. In: Hemingway RW, Laks PE, editors. Plant Polyphenols. Boston, MA, USA: Springer US; 1992. pp. 621-37.

144. Maqsood S, Benjakul S, Shahidi F. Emerging role of phenolic compounds as natural food additives in fish and fish products. Crit Rev Food Sci Nutr 2013;53:162-79.

145. Panzella L, Napolitano A. Natural Phenol Polymers: Recent Advances in Food and Health Applications. Antioxidants (Basel) 2017;6:30.

146. Wang T, Jónsdóttir R, Kristinsson HG, et al. Inhibition of haemoglobin-mediated lipid oxidation in washed cod muscle and cod protein isolates by Fucus vesiculosus extract and fractions. Food Chem 2010;123:321-30.

147. Chakraborty K, Joseph D, Praveen NK. Antioxidant activities and phenolic contents of three red seaweeds (Division: Rhodophyta) harvested from the Gulf of Mannar of Peninsular India. J Food Sci Technol 2015;52:1924-35.

148. Xu T, Sutour S, Casabianca H, et al. Rapid Screening of Chemical Compositions of Gracilaria dura and Hypnea mucisformis (Rhodophyta) from Corsican Lagoon. Intl J Phyto Natu Ingrd 2015;2:8.

149. Tomaz ACDA, Miranda GECD, Souza MDFVD, da Cunha EVL. Analysis and characterization of methyl esters of fatty acids of some Gracilaria species. Biochem Syst Ecol 2012;44:303-6.

150. Santos SA, Vilela C, Freire CS, Abreu MH, Rocha SM, Silvestre AJ. Chlorophyta and Rhodophyta macroalgae: a source of health promoting phytochemicals. Food Chem 2015;183:122-8.

151. Oren A, Gunde-Cimerman N. Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites? FEMS Microbiol Lett 2007;269:1-10.

152. De Flora S, Ferguson LR. Overview of mechanisms of cancer chemopreventive agents. Mutat Res 2005;591:8-15.

153. Lee SB, Lee JY, Song DG, Pan CH, Nho CW, Kim M-C, et al. Cancer chemopreventive effects of Korean seaweed extracts. Food Sci Biotechnol 2008;17:613-22.

154. Teas J. Dietary Seaweed and Breast Cancer: A Randomized Trial. Columbia, SC, USA: 2005.

155. Minami Y, Kanemura S, Oikawa T, et al. Associations of Japanese food intake with survival of stomach and colorectal cancer: A prospective patient cohort study. Cancer Sci 2020;111:2558-69.

156. Zhang X, Aweya JJ, Huang ZX, et al. In vitro fermentation of Gracilaria lemaneiformis sulfated polysaccharides and its agaro-oligosaccharides by human fecal inocula and its impact on microbiota. Carbohydr Polym 2020;234:115894.

157. Zheng LX, Chen XQ, Cheong KL. Current trends in marine algae polysaccharides: The digestive tract, microbial catabolism, and prebiotic potential. Int J Biol Macromol 2020;151:344-54.

158. Gurpilhares DB, Cinelli LP, Simas NK, Pessoa A Jr, Sette LD. Marine prebiotics: Polysaccharides and oligosaccharides obtained by using microbial enzymes. Food Chem 2019;280:175-86.

159. Scharlau D, Borowicki A, Habermann N, et al. Mechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibre. Mutat Res 2009;682:39-53.

160. Chen HM, Yu YN, Wang JL, et al. Decreased dietary fiber intake and structural alteration of gut microbiota in patients with advanced colorectal adenoma. Am J Clin Nutr 2013;97:1044-52.

161. Abreu MT, Peek RM Jr. Gastrointestinal malignancy and the microbiome. Gastroenterology 2014;146:1534-1546.e3.

162. Song M, Wu K, Meyerhardt JA, et al. Fiber Intake and Survival After Colorectal Cancer Diagnosis. JAMA Oncol 2018;4:71-9.

163. Teas J. The dietary intake of Laminaria, a brown seaweed, and breast cancer prevention. Nutr Cancer 1983;4:217-22.

164. Funahashi H, Imai T, Tanaka Y, et al. Suppressive effect of iodine on DMBA-induced breast tumor growth in the rat. J Surg Oncol 1996;61:209-13.

165. Funahashi H, Imai T, Tanaka Y, et al. Wakame seaweed suppresses the proliferation of 7,12-dimethylbenz(a)-anthracene-induced mammary tumors in rats. Jpn J Cancer Res 1999;90:922-7.

166. Funahashi H, Imai T, Mase T, et al. Seaweed prevents breast cancer? Jpn J Cancer Res 2001;92:483-7.

167. Cherry P, Yadav S, Strain CR, et al. Prebiotics from Seaweeds: An Ocean of Opportunity? Mar Drugs 2019;17:327.

168. Yang YJ, Nam SJ, Kong G, Kim MK. A case-control study on seaweed consumption and the risk of breast cancer. Br J Nutr 2010;103:1345-53.

169. Lopez-Santamarina A, Miranda JM, Mondragon ADC, et al. Potential Use of Marine Seaweeds as Prebiotics: A Review. Molecules 2020;25:1004.

170. Cotas J, Leandro A, Pacheco D, Gonçalves AMM, Pereira L. A Comprehensive Review of the Nutraceutical and Therapeutic Applications of Red Seaweeds (Rhodophyta). Life (Basel) 2020;10:19.

171. Cotas J, Leandro A, Monteiro P, et al. Seaweed Phenolics: From Extraction to Applications. Mar Drugs 2020;18:384.

172. Pereira L, Cotas J. Introductory Chapter: Alginates - A General Overview. In: Pereira L, editor. Alginates - Recent Uses of This Natural Polymer. IntechOpen; 2020.

173. Wang HD, Li XC, Lee DJ, Chang JS. Potential biomedical applications of marine algae. Bioresour Technol 2017;244:1407-15.

174. Bilal M, Iqbal HMN. Marine seaweed polysaccharides-based engineered cues for the modern biomedical sector. Mar Drugs 2020;18:7.

175. Sezer AD, Cevher E. Fucoidan: A Versatile Biopolymer for Biomedical Applications. In: Zilberman M, editor. Active Implants and Scaffolds for Tissue Regeneration. Berlin: Springer Berlin Heidelberg; 2011. pp. 377-406.

176. Liu L, Heinrich M, Myers S, Dworjanyn SA. Towards a better understanding of medicinal uses of the brown seaweed Sargassum in Traditional Chinese Medicine: a phytochemical and pharmacological review. J Ethnopharmacol 2012;142:591-619.

177. McKim JM, Willoughby JA Sr, Blakemore WR, Weiner ML. Clarifying the confusion between poligeenan, degraded carrageenan, and carrageenan: A review of the chemistry, nomenclature, and in vivo toxicology by the oral route. Crit Rev Food Sci Nutr 2019;59:3054-73.

178. Pal A, Kamthania MC, Kumar A. Bioactive compounds and properties of seaweeds-a review. OALib 2014;01:1-17.

179. Silva TH, Alves A, Ferreira BM, et al. Materials of marine origin: a review on polymers and ceramics of biomedical interest. Int Mater Rev 2013;57:276-306.

180. Pereira L. Biological and therapeutic properties of the seaweed polysaccharides. Int Biol Rev 2018;2:1-50.

181. Pereira H, Barreira L, Figueiredo F, et al. Polyunsaturated Fatty acids of marine macroalgae: potential for nutritional and pharmaceutical applications. Mar Drugs 2012;10:1920-35.

182. Huheihel M, Ishanu V, Tal J, Arad S. Activity of Porphyridium sp. polysaccharide against herpes simplex viruses in vitro and in vivo. J Biochem Biophys Methods 2002;50:189-200.

183. Palumbo MO, Kavan P, Miller WH Jr, et al. Systemic cancer therapy: achievements and challenges that lie ahead. Front Pharmacol 2013;4:57.

184. Muniyan S, Xi L, Datta K, et al. Cardiovascular risks and toxicity - The Achilles heel of androgen deprivation therapy in prostate cancer patients. Biochim Biophys Acta Rev Cancer 2020;1874:188383.

185. Mayer AMS, Rodríguez AD, Taglialatela-Scafati O, Fusetani N. Marine pharmacology in 2012-2013: marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar Drugs 2017;15:273.

186. Djulbegovic B, Kumar A, Soares HP, et al. Treatment success in cancer: new cancer treatment successes identified in phase 3 randomized controlled trials conducted by the National Cancer Institute-sponsored cooperative oncology groups, 1955 to 2006. Arch Intern Med 2008;168:632-42.

187. Nass SJ, Levit LA, Gostin LO. The Value, Importance, and Oversight of Health Research. In: Nass SJ, Levit LA, Gosti LO, editors. Beyond the HIPAA Privacy Rule: Enhancing Privacy, Improving Health Through Research. Washington, D.C., USA: National Academies Press (US); 2009. Available from: https://www.ncbi.nlm.nih.gov/books/NBK9571/. [Last accessed on 28 Nov 2020].

188. Qi X, Liu G, Qiu L, Lin X, Liu M. Marine bromophenol bis(2,3-dibromo-4,5-dihydroxybenzyl) ether, represses angiogenesis in HUVEC cells and in zebrafish embryos via inhibiting the VEGF signal systems. Biomed Pharmacother 2015;75:58-66.

189. Liu M, Wang G, Xiao L, et al. Bis(2,3-dibromo-4,5-dihydroxybenzyl) ether, a marine algae derived bromophenol, inhibits the growth of Botrytis cinerea and interacts with DNA molecules. Mar Drugs 2014;12:3838-51.

190. Liu M, Zhang W, Wei J, Qiu L, Lin X. Marine bromophenol bis(2,3-dibromo-4,5-dihydroxybenzyl) ether, induces mitochondrial apoptosis in K562 cells and inhibits topoisomerase I in vitro. Toxicol Lett 2012;211:126-34.

191. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646-74.

192. Pádua D, Rocha E, Gargiulo D, Ramos A. Bioactive compounds from brown seaweeds: Phloroglucinol, fucoxanthin and fucoidan as promising therapeutic agents against breast cancer. Phytochem Lett 2015;14:91-8.

193. AbuHammad S, Zihlif M. Gene expression alterations in doxorubicin resistant MCF7 breast cancer cell line. Genomics 2013;101:213-20.

194. Shi Z, Liang Y, Chen Z, et al. Overexpression of Survivin and XIAP in MDR cancer cells unrelated to P-glycoprotein. Oncol Rep 2007;17:969-76.

195. Tegze B, Szállási Z, Haltrich I, et al. Parallel evolution under chemotherapy pressure in 29 breast cancer cell lines results in dissimilar mechanisms of resistance. PLoS One 2012;7:e30804.

196. Yun CW, Kim HJ, Lee SH. Therapeutic Application of Diverse Marine-derived Natural Products in Cancer Therapy. Anticancer Res 2019;39:5261-84.

197. Machana S, Weerapreeyakul N, Barusrux S. Anticancer effect of the extracts from Polyalthia evecta against human hepatoma cell line (HepG2). Asian Pac J Trop Biomed 2012;2:368-74.

198. In vitro antileishmanial, antibacterial, antifungal and anticancer activity of fucoidan from Undaria pinnatifida. Int J Biosci 2017;11:219-27.

199. Reyes ME, Riquelme I, Salvo T, Zanella L, Letelier P, Brebi P. Brown Seaweed Fucoidan in Cancer: Implications in Metastasis and Drug Resistance. Mar Drugs 2020;18:232.

200. Eo HJ, Kwon TH, Park GH, et al. In Vitro Anticancer Activity of Phlorofucofuroeckol A via Upregulation of Activating Transcription Factor 3 against Human Colorectal Cancer Cells. Mar Drugs 2016;14:69.

201. Vizetto-Duarte C, Custódio L, Gangadhar KN, et al. Isololiolide, a carotenoid metabolite isolated from the brown alga Cystoseira tamariscifolia, is cytotoxic and able to induce apoptosis in hepatocarcinoma cells through caspase-3 activation, decreased Bcl-2 levels, increased p53 expression and PARP cleavage. Phytomedicine 2016;23:550-7.

202. Kim RK, Uddin N, Hyun JW, Kim C, Suh Y, Lee SJ. Novel anticancer activity of phloroglucinol against breast cancer stem-like cells. Toxicol Appl Pharmacol 2015;286:143-50.

203. Prasedya ES, Miyake M, Kobayashi D, Hazama A. Carrageenan delays cell cycle progression in human cancer cells in vitro demonstrated by FUCCI imaging. BMC Complement Altern Med 2016;16:270.

204. Yu Q, Yan J, Wang S, et al. Antiangiogenic effects of GFP08, an agaran-type polysaccharide isolated from Grateloupia filicina. Glycobiology 2012;22:1343-52.

205. Cavas L, Baskin Y, Yurdakoc K, Olgun N. Antiproliferative and newly attributed apoptotic activities from an invasive marine alga: Caulerpa racemosa var. cylindracea. J Exp Mar Bio Ecol 2006;339:111-9.

206. Liu Z, Gao T, Yang Y, et al. Anti-Cancer Activity of Porphyran and Carrageenan from Red Seaweeds. Molecules 2019;24:4286.

207. Catarino MD, Silva AMS, Mateus N, Cardoso SM. Optimization of Phlorotannins Extraction from Fucus vesiculosus and Evaluation of Their Potential to Prevent Metabolic Disorders. Mar Drugs 2019;17:162.

208. Hussain SP, Hofseth LJ, Harris CC. Radical causes of cancer. Nat Rev Cancer 2003;3:276-85.

209. Wijesekara I, Yoon NY, Kim SK. Phlorotannins from Ecklonia cava (Phaeophyceae): biological activities and potential health benefits. Biofactors 2010;36:408-14.

210. Li Y, Wijesekara I, Li Y, Kim S. Phlorotannins as bioactive agents from brown algae. Process Biochem 2011;46:2219-24.

211. Lijun H, Nianjun X, Jiangong S, Xiaojun Y, Chengkui Z. Isolation and pharmacological activities of bromophenols fromRhodomela confervoides. Chin J Ocean Limnol 2005;23:226-9.

212. Xu N, Fan X, Yan X, Tseng CK. Screening marine algae from China for their antitumor activities. J Appl Phycol 2004;16:451-6.

213. Shoemaker RH. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 2006;6:813-23.

214. Sepantafar M, Maheronnaghsh R, Mohammadi H, et al. Engineered Hydrogels in Cancer Therapy and Diagnosis. Trends Biotechnol 2017;35:1074-87.

215. Topalian SL, Weiner GJ, Pardoll DM. Cancer immunotherapy comes of age. J Clin Oncol 2011;29:4828-36.

216. Reed SG, Orr MT, Fox CB. Key roles of adjuvants in modern vaccines. Nat Med 2013;19:1597-608.

217. Moyer MW. New adjuvants aim to give whooping cough vaccine a boost. Nat Med 2012;18:991.

218. Costa LS, Fidelis GP, Cordeiro SL, et al. Biological activities of sulfated polysaccharides from tropical seaweeds. Biomed Pharmacother 2010;64:21-8.

219. Maruyama H, Tamauchi H, Iizuka M, Nakano T. The role of NK cells in antitumor activity of dietary fucoidan from Undaria pinnatifida sporophylls (Mekabu). Planta Med 2006;72:1415-7.

220. Chen LM, Liu PY, Chen YA, et al. Oligo-Fucoidan prevents IL-6 and CCL2 production and cooperates with p53 to suppress ATM signaling and tumor progression. Sci Rep 2017;7:11864.

221. Pan TJ, Li LX, Zhang JW, et al. Antimetastatic Effect of Fucoidan-Sargassum against Liver Cancer Cell Invadopodia Formation via Targeting Integrin αVβ3 and Mediating αVβ3/Src/E2F1 Signaling. J Cancer 2019;10:4777-92.

222. Luo M, Shao B, Nie W, et al. Antitumor and Adjuvant Activity of λ-carrageenan by Stimulating Immune Response in Cancer Immunotherapy. Sci Rep 2015;5:11062.

223. Song K, Xu L, Zhang W, et al. Laminarin promotes anti-cancer immunity by the maturation of dendritic cells. Oncotarget 2017;8:38554-67.

224. Sun J, Sun J, Song B, et al. Fucoidan inhibits CCL22 production through NF-κB pathway in M2 macrophages: a potential therapeutic strategy for cancer. Sci Rep 2016;6:35855.

225. Park HB, Hwang J, Zhang W, et al. Polysaccharide from Codium fragile Induces Anti-Cancer Immunity by Activating Natural Killer Cells. Mar Drugs 2020;18:626.

226. Pawar VK, Singh Y, Sharma K, et al. Improved chemotherapy against breast cancer through immunotherapeutic activity of fucoidan decorated electrostatically assembled nanoparticles bearing doxorubicin. Int J Biol Macromol 2019;122:1100-14.

227. Cunha L, Grenha A. Sulfated Seaweed Polysaccharides as Multifunctional Materials in Drug Delivery Applications. Mar Drugs 2016;14:42.

228. Adachi M, Watanabe S. Evaluation of combined deactivators-supplemented agar medium (CDSAM) for recovery of dermatophytes from patients with tinea pedis. Med Mycol 2007;45:347-9.

229. Yew WW, Tong SCW, Lui KS, Leung SKF, Chau CH, Wang EP. Comparison of MB/BacT system and agar proportion method in drug susceptibility testing of Mycobacterium tuberculosis. Diagn Microbiol Infect Dis 2001;39:229-32.

230. Sathuvan M, Thangam R, Gajendiran M, et al. κ-Carrageenan: An effective drug carrier to deliver curcumin in cancer cells and to induce apoptosis. Carbohydr Polym 2017;160:184-93.

231. Sezer AD, Cevher E, Hatipoğlu F, Oğurtan Z, Baş AL, Akbuğa J. The use of fucosphere in the treatment of dermal burns in rabbits. Eur J Pharm Biopharm 2008;69:189-98.

232. Lai YH, Chiang CS, Hsu CH, Cheng HW, Chen SY. Development and Characterization of a Fucoidan-Based Drug Delivery System by Using Hydrophilic Anticancer Polysaccharides to Simultaneously Deliver Hydrophobic Anticancer Drugs. Biomolecules 2020;10:970.

233. Thakur SS, Shenoy SK, Suk JS, Hanes JS, Rupenthal ID. Validation of hyaluronic acid-agar-based hydrogels as vitreous humor mimetics for in vitro drug and particle migration evaluations. Eur J Pharm Biopharm 2020;148:118-25.

234. Wu C, Zhao J, Hu F, et al. Design of injectable agar-based composite hydrogel for multi-mode tumor therapy. Carbohydr Polym 2018;180:112-21.

235. Venkatesan J, Anil S, Kim SK, Shim MS. Seaweed Polysaccharide-Based Nanoparticles: Preparation and Applications for Drug Delivery. Polymers (Basel) 2016;8:30.

236. Zhang C, Wang W, Wang C, et al. Cytotoxicity of liver targeted drug-loaded alginate nanoparticles. Sci China Ser B-Chem 2009;52:1382-7.

237. Zhang C, Wang W, Liu T, et al. Doxorubicin-loaded glycyrrhetinic acid-modified alginate nanoparticles for liver tumor chemotherapy. Biomaterials 2012;33:2187-96.

238. Roy D, Cambre JN, Sumerlin BS. Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci 2010;35:278-301.

239. Bouhadir KH, Alsberg E, Mooney DJ. Hydrogels for combination delivery of antineoplastic agents. Biomaterials 2001;22:2625-33.

240. Chemoprotective Agents. Available from: https://chemoth.com/chemoprotective. [Last accessed on 15 Nov 2020].

241. Shin T, Ahn M, Hyun JW, Kim SH, Moon C. Antioxidant marine algae phlorotannins and radioprotection: a review of experimental evidence. Acta Histochem 2014;116:669-74.

242. Park E, Lee NH, Joo HG, Jee Y. Modulation of apoptosis of eckol against ionizing radiation in mice. Biochem Biophys Res Commun 2008;372:792-7.

243. Shibata T, Ishimaru K, Kawaguchi S, Yoshikawa H, Hama Y. Antioxidant activities of phlorotannins isolated from Japanese Laminariaceae. J Appl Phycol 2008;20:705-11.

244. Besednova NN, Zvyagintseva TN, Kuznetsova TA, et al. Marine Algae Metabolites as Promising Therapeutics for the Prevention and Treatment of HIV/AIDS. Metabolites 2019;9:87.

245. Kim AR, Lee MS, Shin TS, et al. Phlorofucofuroeckol A inhibits the LPS-stimulated iNOS and COX-2 expressions in macrophages via inhibition of NF-κB, Akt, and p38 MAPK. Toxicol In Vitro 2011;25:1789-95.

246. Chang MY, Byon SH, Shin HC, et al. Protective effects of the seaweed phlorotannin polyphenolic compound dieckol on gentamicin-induced damage in auditory hair cells. Int J Pediatr Otorhinolaryngol 2016;83:31-6.

247. Liu EH, Qi LW, Wu Q, Peng YB, Li P. Anticancer agents derived from natural products. Mini Rev Med Chem 2009;9:1547-55.

248. van Weelden G, Bobiński M, Okła K, van Weelden WJ, Romano A, Pijnenborg JMA. Fucoidan Structure and Activity in Relation to Anti-Cancer Mechanisms. Mar Drugs 2019;17:32.

249. Kwak JY. Fucoidan as a marine anticancer agent in preclinical development. Mar Drugs 2014;12:851-70.

250. Fletcher H, Biller P, Ross A, Adams J. The seasonal variation of fucoidan within three species of brown macroalgae. Algal Res 2017;22:79-86.

251. Riou D, Colliec-Jouault S, Pinczon Du Sel D, et al. Antitumor and antiproliferative effects of a fucan extracted from Ascophyllum nodosum against a non-small-cell bronchopulmonary carcinoma line. Anticancer Res 1996;16:1213-8.

252. Lin Y, Qi X, Liu H, Xue K, Xu S, Tian Z. The anti-cancer effects of fucoidan: a review of both in vivo and in vitro investigations. Cancer Cell Int 2020;20:154.

253. Tokita Y, Nakajima K, Mochida H, Iha M, Nagamine T. Development of a fucoidan-specific antibody and measurement of fucoidan in serum and urine by sandwich ELISA. Biosci Biotechnol Biochem 2010;74:350-7.

254. Lowenthal RM, Fitton JH. Are seaweed-derived fucoidans possible future anti-cancer agents? J Appl Phycol 2015;27:2075-7.

255. Tsai HL, Tai CJ, Huang CW, Chang FR, Wang JY. Efficacy of Low-Molecular-Weight Fucoidan as a Supplemental Therapy in Metastatic Colorectal Cancer Patients: A Double-Blind Randomized Controlled Trial. Mar Drugs 2017;15:122.

256. Tocaciu S, Oliver LJ, Lowenthal RM, et al. The Effect of Undaria pinnatifida Fucoidan on the Pharmacokinetics of Letrozole and Tamoxifen in Patients With Breast Cancer. Integr Cancer Ther 2018;17:99-105.

257. Ikeguchi M, Yamamoto M, Arai Y, et al. Fucoidan reduces the toxicities of chemotherapy for patients with unresectable advanced or recurrent colorectal cancer. Oncol Lett 2011;2:319-22.

258. Scheuer PJ, Hammann MT, Gravalos DG. .

259. Suárez Y, González L, Cuadrado A, Berciano M, Lafarga M, Muñoz A. Kahalalide F, a new marine-derived compound, induces oncosis in human prostate and breast cancer cells. Mol Cancer Ther 2003;2:863-72.

260. Martín-Algarra S, Espinosa E, Rubió J, et al. Phase II study of weekly Kahalalide F in patients with advanced malignant melanoma. Eur J Cancer 2009;45:732-5.

261. Claudio F, Stendardo B. An experimental contribution to the clinical use of an algal phytocolloid (Algasol T331) in oncology. Proceedings of the Fifth International Seaweed Symposium, Halifax, August 25-28, 1965. Elsevier; 1966. p. 369.

Journal of Cancer Metastasis and Treatment
ISSN 2454-2857 (Online) 2394-4722 (Print)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/